

DEPARTMENT

OF

MATHEMATICS

M.SC. PROGRAM

&

COURSE OUTCOME ACADEMIC YEAR 2024 - 2025

M.Sc. MATHEMATICS

PROGRAMME OUTCOMES (POs)

PO1: Problem Solving Skill: Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.

PO2: Decision Making Skill: Foster analytical and critical thinking abilities for data-based decision-making.

PO3: Ethical Value: Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.

PO4: Communication Skill: Ability to develop communication, managerial and interpersonal skills.

PO5: Individual and Team Leadership Skill: Capability to lead themselves and the team to achieve organizational goals.

PO6: Employability Skill: Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill: Equip with skills and competencies to become an entrepreneur.

PO8: Contribution to Society: Succeed in career endeavours and contribute significantly to society.

PO9: Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO10: Moral and ethical awareness/reasoning: Ability to embrace moral/ethical values in conducting one's life.

I M.SC MATHEMATICS

Sem	Semester-I	Subject Code	Credit	Hours per
				week
I	1.1. CC-I : Group Theory	VMAC 11	5	6
	1.2. CC-II : Real Analysis - I	VMAC 12	5	6
	1.3. CC-III : Ordinary Differential Equations	VMAC 13	4	6
	1.4. Elective - I	VMAE 11	3	6
	1.4.1. Graph Theory and Applications			
	1.5. Elective - II	VMAE 15	3	6
	1.5.1. Analytic Number Theory			

Subject Code: VMAC11

Subject: Group Theory

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Recall basic counting principle, characterization of normal subgroups, group homomorphism and application.	MMGT 01
2.	Define Solvable groups, automorphisms and Cayley's Theorem.	MMGT 02
3.	Explain Permutation Groups and Another Counting Principle.	MMGT 03
4.	Explain Sylow's Theorems and Apply the Theorem to find number of Sylow subgroups.	MMGT 04
5.	Define direct products, examine the properties of finite abelian groups.	MMGT 05

Subject Code: VMAC12

Subject: Real Analysis 1

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Analyze and evaluate functions of bounded variation and Rectifiable	MMRA 01
	Curves	
2.	Describe the concept of Riemann-Stieltjes integral and its properties	MMRA02
3.	Demonstrate the concept of step function, upper function, Lebesgue	MMRA 03
	function and their integrals	
4.	Construct various mathematical proofs using the properties of Lebesgue	MMRA 04
	integrals and establish the Levi monotone convergence theorem	
5.	Formulate the concept and properties of inner products, norms and	MMRA 05
	measurable functions	

Subject code: VMAC13 Subject: Ordinary Differential Equations

On successful completion of this course, the students will able to

Sl.No.	Course outcome	Code
1	Establish the qualitative behaviour of solutions of systems of differential equations	MMODE-01
2	Recognize the physical phenomena modelled by differential equatios and dynamical systems	MMODE-02
3	Analyze solutions using appropriate methods and give examples	MMODE-03
4	Formulate Green's function for boundary value problems	MMODE-04
5	Understand and use various theoretical ideas and results that underlie the mathematics in this course	MMODE-05

 Website:
 www.stalphonsa.edu.in
 Email:
 stalphons2014@gmail.com
 Ph: 04651 - 255540
 Mob: 94449 68233

Subject Code: VMAE11

Subject: Graph Theory and Applications

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Demonstarte the concept of different structures and types about graphs and	MMGTA 01
	its applications.	
2.	Determine the properties of trees and its applications in network and study	MMGTA 02
	the concepts of connections in graphs.	
3.	Acquire the knowledge about Euler Tours, Hamilton cycles and matchings	MMGTA 03
	in graphs.	
4.	Analyze the concept of edge colouring, independent sets and cliques in	MMGTA 04
	graphs.	
5.	Explain the concept of vertex colorings	MMGTA 05

Subject Code: VMAE15

Subject: Analytical Number theory

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Study the basic concepts of elementary number theory	MMANT 01
2.	Explain several arithmetical functions and construct their relationships	MMANT 02
3.	Apply algebraic structure in arithmetical functions	MMANT 03
4.	Demonstrate various identities satisfied by arithmetical functions	MMANT 04
5.	Determine the application to $\mu(n)$ & $\Lambda(n)$ and several equivalent form of prime number theorem	MMANT 05

II M.Sc MATHEMATICS

Sem	Course	Subject Name	Course Code
	Core VII	Complex Analysis	WMAM31
	Core VIII	Probability Theory	WMAM32
тт	Core IX	Topology	WMAM33
	Core X	Calculus of Variations and Integral Equations	WMAE34
	Elective - V	Research Methodology	WMAE35

Subject: Complex analysis Subject code: WMAM 31 Students will be able to

Sl.No	Course Outcome	Code
1	Explain analytic functions and power Series	MMCA 01
2	Explain index of a point, integral formula, higher derivatives and removable singularities	MMCA 02
3	Demonstrate the concept of the general form of Cauchy's theorem	MMCA 03
4	Describe the concept of definite integral and harmonic functions.	MMCA 04
5	Develop Taylor and Laurent scries.	MMCA 05

Website: www.stalphonsa.edu.in

Subject Code: WMAM32

Subject: Probability Theory

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	To define random events, random variables to describe probability to apply	MMPT 01
	Bayes, to define distribution function, to find joint distribution function, to	
	define marginal distribution function and conditional distribution function, to	
	solve functions on random variables.	
2.	To define expectation, moments and Chebychev inequality, to solve the	MMPT 02
	regression of first and second types.	
3.	To define characteristic functions, to define distribution function, to define	MMPT 03
	probability generating functions, to solve problems applying characteristic	
	functions	
4.	To define one point, two point, binomial distributions, to solve problems of	MMPT 04
	hypergeometric and Poisson distributions, to define uniform, beta, gamma	
	distributions, to solve problems on Cauchy and Laplace distributions	
5.	To discuss Stochastic Convergence, Bernoulli Law of large numbers, to	MMPT 05
	elaborate the convergence of sequence of distribution functions, de-Moivre	
	Laplace theorem, to explain Poisson, Chebychev, Khintchine Weak Law of large	
	numbers.	

Subject Code: WMAM33

Subject: Topology

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Define and illustrate the concept of topological spaces and the basic	MMT 01
	definitions of open sets, neighbourhood, interior, exterior, closure and	
	their axioms for defining topological space	
2.	Understand continuous functions, the product topology and metric	MMT 02
	topology	
3.	Understand Connected spaces, Components and Local Connectedness	MMT 03
4.	Understand Compact spaces, Limit Point Compactness and Local	MMT 04
	Compactness	
5.	Develop qualitative tools to characterize connectedness and compactness	MMT 05

Subject code : WMAE14

Subject : Research Methodology

On successful completion of this course , the students will able to

Sl.No.	Course outcome	Code
1	Discuss to know about writing style	MMRM-01
2	Discuss the tips and strategies	MMRM-02
3	To know about the research project	MMRM-03
4	Discuss the different components of Research Project	MMRM-04
5	To learn the publication and presentation of research articles and Tool kits	MMRM-05

Subject Code: WMAE34

Subject: Calculus of variation and Integral Equations

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Understand the Calculus of variation and applications	MMCV 01
2.	Understand the constraints and Lagrange multipliers	MMCV 02
3.	Integral equations	MMCV 03
4.	Explain the cause and effect of Linear equations	MMCV 04
5.	Explain the Hilbert Schmidt theory	MMCV 05