

DEPARTMENT

OF

MATHEMATICS

UNDER GRADUATE PROGRAMME

&

COURSE OUTCOME ACADEMIC YEAR 2024 - 2025

 Website: www.stalphonsa.edu.in
 Email: stalphons2014@gmail.com
 Ph: 04651 - 255540
 Mob: 94449 68233

 UNDER GRADUATE PROGRAMME OUTCOMES:

PO1: Disciplinary Knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.

PO2: Critical Thinking: Capability to apply analytic thought to a body of knowledge; analyze and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.

PO3: Problem Solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's earning to real life situations.

PO4: Analytical Reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples and addressing opposing viewpoints.

PO5: Scientific Reasoning: Ability to analyse, interpret and draw conclusions from quantitative / qualitative data; and critically evaluate ideas, evidence, and experiences from an open minded and reasoned perspective.

PO6: Self-directed & Lifelong Learning: Ability to work independently, identify and manage a project. Ability to acquire knowledge and skills, including "learning how to learn", through self- placed and self-directed learning aimed at personal development, meeting economic, social and cultural objectives.

II B.Sc MATHEMATICS

Sem	Part	List of Courses	Subject code	Credit	Hours per week (L/T/P)
	Part-III	3.3. Core Course CC5: Vector Calculus and Applications	EMMA31	4	4
		3.4. Core Course CC6: Differential Equations and Applications	EMMA32	4	4
Π		3.5. Elective Course EC3: Statistics I	EEST31	4	4
	Part-IV	3.6. Skill Enhancement Course SEC4: Computational Mathematics	ESMA31	2	2
		3.8. Naan Mudhalvan: Microsoft OfficeEssential(Substitute Course: Mathematics forCompetitive Examination IV)		2	2

Subject: Vector calculus and applications

Subject code: EMMA31

Students will be able to

Sl.No	Course Outcome	CO No.
1	Find the derivative of vector and sum of vectors, product of scalar and vectorpoint function and to Determine	BMVCP-01
	derivatives of scalar and vector products	
2	Applications of the operator 'del' and to Explain solenoidal and irrotational vectors	BMVCP-02
3	Evaluate simple line integrals	BMVCP-03
4	Evaluate surface integrals and volume integrals.	BMVCP-04
5	Verify the theorems of Gauss, Stoke's and Green's.	BMVCP-05

Subject Code: EMMA32

Subject: Differential Equations and Applications

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Determine solutions of homogeneous equations, non-homogeneous equations of degree one in two variables, solve Bernoulli's equations and exact differential equations.	BMDEA 01
2.	Find the solutions of equations of first order but not of higher degree and to Determine particular integrals of algebraic, exponential, trigonometric functions and their products.	BMDEA 02
3.	Find solutions linear equations of second order and know some applications.	BMDEA 03
4.	Form a PDE by eliminating arbitrary constants and arbitrary functions, find complete, singular and general integrals, to solve Lagrange's equations.	BMDEA 04
5.	Explain standard forms of PDE and find solutions.	BMDEA 05

Subject Code: EEST31 Subject: Statistics I

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Find coefficient of dispersion, moments, skewness and kurtosis	BMS 01
2.	Find Karl Pearson's correlation and rank correlation	BMS 02
3.	Fit a straight line and parabolic curve by the method of least squares and find the regression lines and regression coefficients	BMS 03
4.	Develop the statistical techniques used in the theory of attributes and to analyze consistency of data	BMS 04
5.	Find the Index number	BMS 05

Subject: Computational mathematics Subject code: ESMA31

On successful completion of the course, the students will be able to

Sl.No	Course Outcome	Code
1	Describe the roots of algebraic equations using different methods like iterationmethod and Regula Falsie method.	BMCM 01
2	Find the real root of an equation by Bisection method, Newton-Raphson method and Horner's method.	BMCM 02
3	Solve a given system of simultaneous equation by using substitution and elimination methods.	BMCM 03
4	Solve a given system of simultaneous equation by using iteration method.	BMCM 04
5	Find numerical solutions of Partial Differential.	BMCM 05

Website: www.stalphonsa.edu.in Email: stalphons2014@gmail.com Ph: 04651 - 255540 Mob: 94449 68233 III B.Sc MATHEMATICS

Subject Code Hrs/ weeek Subject Credit Sem Subject Status Subject name number 27 LinearAlgebra CMMA 51 5 4 **Core-V** Paper-VII 5 RealAnalysis 4 28 **Core-VI** CMMA52 Paper-VIII 29 5 **Core-VII** Statics 4 CMMA 53 Paper-IX V 30 **Core-VIII Integral Transforms and CMMA 54** 5 4 **Z** Transforms Paper-X 31 Discrete **CEMA 52** Major Mathematics **Elective-I Paper-XI** 4 32 **Operations Research-I** 4 4 Major CEMA 51 Elective –II **Paper-XII**

Website: www.stalphonsa.edu.in Email: stalphons2014@gmail.com Ph: 04651 - 255540 Mob: 94449 68233

Subject: Linear Algebra Subject Code: CMMA51

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Explain the definitions and general properties of vector spaces. Also to explain subspace. They know where to apply fundamental theorem of homomorphism.	BMLA 01
2.	Determine the span of a set and to check whether the given set is Linearly dependent or not. Also to find basis and dimensions.	BMLA 02
3.	Illustrate and apply Rank Nullity theorem.Explain the definitions and examples of inner product space.Apply Gram Schmidt Orthogonalization process.	BMLA 03
4.	Construct matrices and also to summarize the elementary transformations.Determine the Inverse of matrix and rank of a matrix. To make use of Cayley Hamilton Theorem.	BMLA 04
5.	Determine Eigen Values and Eigen Vectors. Identify bilinear forms and quadratic forms. Also To deduce Diagonal form from Quadratic form.	BMLA 05

Subject Code: CMMA52

Subject: Real Analysis

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Explain about Metric spaces and to construct an open ball .Also to interpret interior	BMRA 01
2.	Interpret about closed sets and to find closure. To determine limit points. Analyze about complete metric space.Discuss about Cantor's intersection theorem and Baire's Category theorem	BMRA 02
3.	Summarize continuity. Illustrate about uniform continuity	BMRA 03
4.	Explain about connectedness and to deduce the connected subsets of R. To obtain the relationship between connectedness and continuity	BMRA 04
5.	Illustrate about compactness and to find the connected subsets of R. Illustrate and make use of Heine Borel Theorem .To determine the relationship between compactness and continuity	BMRA 05

Subject code: CMMA53

Subject: Statics

On successful completion of this course, the students will able to

Sl.No.	Course outcome	Code
1	Understand the procedure for analysis of static objects, the concepts of force, moment and equilibrium of a particle	BMSS-01
2	Solve problems on equilibrium of three forces acting on rigid body	BMSS-02
3	Develop a working knowledge to handle practical problems	BMSS-03
4	Describe friction and its causes	BMSS-04
5	Develop equilibrium releationships for rigid bodies acted on by external forces and moments	BMSS-05

Subject: Integral transforms and Z transforms Subject code: CMMA54

On successful completion of the course, the students should be able to

S.NO	Course Outcome	CODE
1	Apply Fourier transforms and to explain the properties.	BMIT 01
2	Solve problems on infinite Fourier cosineand Sine Transforms	BMIT 02
3	Identify and solve Finite Fourier transfoms	BMIT 03
4	Illustrate Z transforms and its properties.	BMIT 04
5	Utilize inverse Z transforms to solve difference equations.	BMIT 05

Subject Code: CEMA52

Subject: Discrete Mathematics

On successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Illustrate and use the statements, notations and connectives. Construct truth table and utilize conditional and biconditional statements.	BMDM 01
2.	Analyze and explain predicate Calculus.	BMDM 02
3.	Elaborate Groups and monoids. Also to develop Group codes.	BMDM 03
4.	Construct Lattices and Special lattices. Analyze and explain Boolean algebra.	BMDM 04
5.	Convert From one form to another form (Decimal, Binary, Octal, Hexadecimal). Evaluate Binary addition, subtraction, multiplication and division.	BMDM 05

 Website:
 www.stalphonsa.edu.in
 Email:
 stalphons2014@gmail.com
 Ph: 04651 - 255540
 Mob: 94449 68233

Subject Code: CEMA51

Subject: Operational Research I

On Successful completion of this course, the students will be able to:

SL.No	Course Outcome	Code
1.	Solve Linear Programming Problem by making use of Graphical method, Simplex method.	BMOR 01
2.	Interpret the concept of duality. Classify primal and dual problems. Utilizing the concept of duality ,solve problems on dual simplex method.	BMOR 02
3.	Solve Transportation problems by making use of North – west corner rule, Matrix- Minima method, Vogel's Approximation rule. Evaluate Degeneracy and unbalanced transportation problems.	BMOR 03
4.	Determine the solution for Assignment problems	BMOR 04
5.	Solve sequencing problems	BMOR 05